Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Age Ageing ; 51(12)2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2151831

ABSTRACT

BACKGROUND: dementia may increase care home residents' risk of COVID-19, but there is a lack of evidence on this effect and on interactions with individual and care home-level factors. METHODS: we created a national cross-sectional retrospective cohort of care home residents in Wales for 1 September to 31 December 2020. Risk factors were analysed using multi-level logistic regression to model the likelihood of SARS-CoV-2 infection and mortality. RESULTS: the cohort included 9,571 individuals in 673 homes. Dementia was diagnosed in 5,647 individuals (59%); 1,488 (15.5%) individuals tested positive for SARS-CoV-2. We estimated the effects of age, dementia, frailty, care home size, proportion of residents with dementia, nursing and dementia services, communal space and region. The final model included the proportion of residents with dementia (OR for positive test 4.54 (95% CIs 1.55-13.27) where 75% of residents had dementia compared to no residents with dementia) and frailty (OR 1.29 (95% CIs 1.05-1.59) for severe frailty compared with no frailty). Analysis suggested 76% of the variation was due to setting rather than individual factors. Additional analysis suggested severe frailty and proportion of residents with dementia was associated with all-cause mortality, as was dementia diagnosis. Mortality analyses were challenging to interpret. DISCUSSION: whilst individual frailty increased the risk of COVID-19 infection, dementia was a risk factor at care home but not individual level. These findings suggest whole-setting interventions, particularly in homes with high proportions of residents with dementia and including those with low/no individual risk factors may reduce the impact of COVID-19.


Subject(s)
COVID-19 , Dementia , Frailty , Humans , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/therapy , Nursing Homes , Retrospective Studies , Prevalence , Incidence , Cross-Sectional Studies , Frailty/diagnosis , Frailty/epidemiology , Dementia/diagnosis , Dementia/epidemiology , Dementia/therapy
2.
International journal of population data science ; 7(3), 2022.
Article in English | EuropePMC | ID: covidwho-2124999
3.
Age Ageing ; 51(8)2022 Aug 02.
Article in English | MEDLINE | ID: covidwho-1985029

ABSTRACT

BACKGROUND: falls are common in older people, but associations between falls, dementia and frailty are relatively unknown. The impact of the COVID-19 pandemic on falls admissions has not been studied. AIM: to investigate the impact of dementia, frailty, deprivation, previous falls and the differences between years for falls resulting in an emergency department (ED) or hospital admission. STUDY DESIGN: longitudinal cross-sectional observational study. SETTING: older people (aged 65+) resident in Wales between 1 January 2010 and 31 December 2020. METHODS: we created a binary (yes/no) indicator for a fall resulting in an attendance to an ED, hospital or both, per person, per year. We analysed the outcomes using multilevel logistic and multinomial models. RESULTS: we analysed a total of 5,141,244 person years of data from 781,081 individuals. Fall admission rates were highest in 2012 (4.27%) and lowest in 2020 (4.27%). We found an increased odds ratio (OR [95% confidence interval]) of a fall admission for age (1.05 [1.05, 1.05] per year of age), people with dementia (2.03 [2.00, 2.06]) and people who had a previous fall (2.55 [2.51, 2.60]). Compared with fit individuals, those with frailty had ORs of 1.60 [1.58, 1.62], 2.24 [2.21, 2.28] and 2.94 [2.89, 3.00] for mild, moderate and severe frailty respectively. Reduced odds were observed for males (0.73 [0.73, 0.74]) and less deprived areas; most deprived compared with least OR 0.75 [0.74, 0.76]. CONCLUSIONS: falls prevention should be targeted to those at highest risk, and investigations into the reduction in admissions in 2020 is warranted.


Subject(s)
COVID-19 , Dementia , Frailty , Aged , COVID-19/epidemiology , Cross-Sectional Studies , Dementia/diagnosis , Dementia/epidemiology , Emergency Service, Hospital , Frailty/diagnosis , Frailty/epidemiology , Hospitals , Humans , Male , Pandemics , United Kingdom/epidemiology , Wales/epidemiology
4.
J R Soc Med ; : 1410768221107119, 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1916722

ABSTRACT

OBJECTIVES: To better understand the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among healthcare workers, leading to recommendations for the prioritisation of personal protective equipment, testing, training and vaccination. DESIGN: Observational, longitudinal, national cohort study. SETTING: Our cohort were secondary care (hospital-based) healthcare workers employed by NHS Wales (United Kingdom) organisations from 1 April 2020 to 30 November 2020. PARTICIPANTS: We included 577,756 monthly observations among 77,587 healthcare workers. Using linked anonymised datasets, participants were grouped into 20 staff roles. Additionally, each role was deemed either patient-facing, non-patient-facing or undetermined. This was linked to individual demographic details and dates of positive SARS-CoV-2 PCR tests. MAIN OUTCOME MEASURES: We used univariable and multivariable logistic regression models to determine odds ratios (ORs) for the risk of a positive SARS-CoV-2 PCR test. RESULTS: Patient-facing healthcare workers were at the highest risk of SARS-CoV-2 infection with an adjusted OR (95% confidence interval [CI]) of 2.28 (95% CI 2.10-2.47). We found that after adjustment, foundation year doctors (OR 1.83 [95% CI 1.47-2.27]), healthcare support workers [OR 1.36 [95% CI 1.20-1.54]) and hospital nurses (OR 1.27 [95% CI 1.12-1.44]) were at the highest risk of infection among all staff groups. Younger healthcare workers and those living in more deprived areas were at a higher risk of infection. We also observed that infection rates varied over time and by organisation. CONCLUSIONS: These findings have important policy implications for the prioritisation of vaccination, testing, training and personal protective equipment provision for patient-facing roles and the higher risk staff groups.

5.
Int J Popul Data Sci ; 5(4): 1715, 2020.
Article in English | MEDLINE | ID: covidwho-1893601

ABSTRACT

Background: Population-level information on dispensed medication provides insight on the distribution of treated morbidities, particularly if linked to other population-scale data at an individual-level. Objective: To evaluate the impact of COVID-19 on dispensing patterns of medications. Methods: Retrospective observational study using population-scale, individual-level dispensing records in Wales, UK. Total dispensed drug items for the population between 1 st January 2016 and 31 st December 2019 (3-years, pre-COVID-19) were compared to 2020 with follow up until 27 th July 2021 (COVID-19 period). We compared trends across all years and British National Formulary (BNF) chapters and highlighted the trends in three major chapters for 2019-21: 1-Cardiovascular system (CVD); 2-Central Nervous System (CNS); 3-Immunological & Vaccine. We developed an interactive dashboard to enable monitoring of changes as the pandemic evolves. Result: Amongst all BNF chapters, 73,410,543 items were dispensed in 2020 compared to 74,121,180 items in 2019 demonstrating -0.96% relative decrease in 2020. Comparison of monthly patterns showed average difference (D) of -59,220 and average Relative Change (RC) of -0.74% between the number of dispensed items in 2020 and 2019. Maximum RC was observed in March 2020 (D = +1,224,909 and RC = +20.62), followed by second peak in June 2020 (D = +257,920, RC = +4.50%). A third peak was observed in September 2020 (D = +264,138, RC = +4.35%). Large increases in March 2020 were observed for CVD and CNS medications across all age groups. The Immunological and Vaccine products dropped to very low levels across all age groups and all months (including the March dispensing peak). Conclusions: Reconfiguration of routine clinical services during COVID-19 led to substantial changes in community pharmacy drug dispensing. This change may contribute to a long-term burden of COVID-19, raising the importance of a comprehensive and timely monitoring of changes for evaluation of the potential impact on clinical care and outcomes.


Subject(s)
COVID-19 Drug Treatment , Cardiovascular Diseases , Humans , Pandemics , Retrospective Studies , Wales/epidemiology
6.
Age Ageing ; 51(5)2022 05 01.
Article in English | MEDLINE | ID: covidwho-1890851

ABSTRACT

BACKGROUND: COVID-19 vaccinations have been prioritised for high risk individuals. AIM: Determine individual-level risk factors for care home residents testing positive for SARS-CoV-2. STUDY DESIGN: Longitudinal observational cohort study using individual-level linked data from the Secure Anonymised Information Linkage (SAIL) databank. SETTING: Fourteen thousand seven hundred and eighty-six older care home residents (aged 65+) living in Wales between 1 September 2020 and 1 May 2021. Our dataset consisted of 2,613,341 individual-level daily observations within 697 care homes. METHODS: We estimated odds ratios (ORs [95% confidence interval]) using multilevel logistic regression models. Our outcome of interest was a positive SARS-CoV-2 PCR test. We included time-dependent covariates for the estimated community positive test rate of COVID-19, hospital inpatient status, vaccination status and frailty. Additional covariates were included for age, sex and specialist care home services. RESULTS: The multivariable regression model indicated an increase in age (OR 1.01 [1.00,1.01] per year), community positive test rate (OR 1.13 [1.12,1.13] per percent increase), hospital inpatients (OR 7.40 [6.54,8.36]), and residents in care homes with non-specialist dementia care (OR 1.42 [1.01,1.99]) had an increased odds of a positive test. Having a positive test prior to the observation period (OR 0.58 [0.49,0.68]) and either one or two doses of a vaccine (0.21 [0.17,0.25] and 0.05 [0.02,0.09], respectively) were associated with a decreased odds. CONCLUSIONS: Care providers need to remain vigilant despite the vaccination rollout, and extra precautions should be taken when caring for the most vulnerable. Minimising potential COVID-19 infection for care home residents when admitted to hospital should be prioritised.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Length of Stay , Risk Factors , SARS-CoV-2 , Vaccination , Wales/epidemiology
7.
Int J Popul Data Sci ; 5(4): 1697, 2020.
Article in English | MEDLINE | ID: covidwho-1754159

ABSTRACT

Introduction: COVID-19 risk prediction algorithms can be used to identify at-risk individuals from short-term serious adverse COVID-19 outcomes such as hospitalisation and death. It is important to validate these algorithms in different and diverse populations to help guide risk management decisions and target vaccination and treatment programs to the most vulnerable individuals in society. Objectives: To validate externally the QCOVID risk prediction algorithm that predicts mortality outcomes from COVID-19 in the adult population of Wales, UK. Methods: We conducted a retrospective cohort study using routinely collected individual-level data held in the Secure Anonymised Information Linkage (SAIL) Databank. The cohort included individuals aged between 19 and 100 years, living in Wales on 24th January 2020, registered with a SAIL-providing general practice, and followed-up to death or study end (28th July 2020). Demographic, primary and secondary healthcare, and dispensing data were used to derive all the predictor variables used to develop the published QCOVID algorithm. Mortality data were used to define time to confirmed or suspected COVID-19 death. Performance metrics, including R2 values (explained variation), Brier scores, and measures of discrimination and calibration were calculated for two periods (24th January-30th April 2020 and 1st May-28th July 2020) to assess algorithm performance. Results: 1,956,760 individuals were included. 1,192 (0.06%) and 610 (0.03%) COVID-19 deaths occurred in the first and second time periods, respectively. The algorithms fitted the Welsh data and population well, explaining 68.8% (95% CI: 66.9-70.4) of the variation in time to death, Harrell's C statistic: 0.929 (95% CI: 0.921-0.937) and D statistic: 3.036 (95% CI: 2.913-3.159) for males in the first period. Similar results were found for females and in the second time period for both sexes. Conclusions: The QCOVID algorithm developed in England can be used for public health risk management for the adult Welsh population.


Subject(s)
COVID-19 , Adult , Aged , Aged, 80 and over , Algorithms , Cohort Studies , Female , Humans , Male , Middle Aged , Retrospective Studies , Wales/epidemiology , Young Adult
8.
Age Ageing ; 51(5)2022 05 01.
Article in English | MEDLINE | ID: covidwho-1740783

ABSTRACT

BACKGROUND: defining features of the COVID-19 pandemic in many countries were the tragic extent to which care home residents were affected and the difficulty in preventing the introduction and subsequent spread of infection. Management of risk in care homes requires good evidence on the most important transmission pathways. One hypothesised route at the start of the pandemic, prior to widespread testing, was the transfer of patients from hospitals that were experiencing high levels of nosocomial events. METHODS: we tested the hypothesis that hospital discharge events increased the intensity of care home cases using a national individually linked health record cohort in Wales, UK. We monitored 186,772 hospital discharge events over the period from March to July 2020, tracking individuals to 923 care homes and recording the daily case rate in the homes populated by 15,772 residents. We estimated the risk of an increase in case rates following exposure to a hospital discharge using multi-level hierarchical logistic regression and a novel stochastic Hawkes process outbreak model. FINDINGS: in regression analysis, after adjusting for care home size, we found no significant association between hospital discharge and subsequent increases in care home case numbers (odds ratio: 0.99, 95% CI: 0.82, 1.90). Risk factors for increased cases included care home size, care home resident density and provision of nursing care. Using our outbreak model, we found a significant effect of hospital discharge on the subsequent intensity of cases. However, the effect was small and considerably less than the effect of care home size, suggesting the highest risk of introduction came from interaction with the community. We estimated that approximately 1.8% of hospital discharged patients may have been infected. INTERPRETATION: there is growing evidence in the UK that the risk of transfer of COVID-19 from the high-risk hospital setting to the high-risk care home setting during the early stages of the pandemic was relatively small. Although access to testing was limited to initial symptomatic cases in each care home at this time, our results suggest that reduced numbers of discharges, selection of patients and action taken within care homes following transfer all may have contributed to the mitigation. The precise key transmission routes from the community remain to be quantified.


Subject(s)
COVID-19 , COVID-19/epidemiology , Hospitals , Humans , Nursing Homes , Pandemics/prevention & control , Patient Discharge , United Kingdom/epidemiology
9.
Vaccine ; 40(8): 1180-1189, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1621088

ABSTRACT

BACKGROUND: While population estimates suggest high vaccine effectiveness against SARS-CoV-2 infection, the protection for health care workers, who are at higher risk of SARS-CoV-2 exposure, is less understood. METHODS: We conducted a national cohort study of health care workers in Wales (UK) from 7 December 2020 to 30 September 2021. We examined uptake of any COVID-19 vaccine, and the effectiveness of BNT162b2 mRNA (Pfizer-BioNTech) against polymerase chain reaction (PCR) confirmed SARS-CoV-2 infection. We used linked and routinely collected national-scale data within the SAIL Databank. Data were available on 82,959 health care workers in Wales, with exposure extending to 26 weeks after second doses. RESULTS: Overall vaccine uptake was high (90%), with most health care workers receiving theBNT162b2 vaccine (79%). Vaccine uptake differed by age, staff role, socioeconomic status; those aged 50-59 and 60+ years old were 1.6 times more likely to get vaccinated than those aged 16-29. Medical and dental staff, and Allied Health Practitioners were 1.5 and 1.1 times more likely to get vaccinated, compared to nursing and midwifery staff. The effectiveness of the BNT162b2 vaccine was found to be strong and consistent across the characteristics considered; 52% three to six weeks after first dose, 86% from two weeks after second dose, though this declined to 53% from 22 weeks after the second dose. CONCLUSIONS: With some variation in rate of uptake, those who were vaccinated had a reduced risk of PCR-confirmed SARS-CoV-2 infection, compared to those unvaccinated. Second dose has provided stronger protection for longer than first dose but our study is consistent with waning from seven weeks onwards.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Adult , BNT162 Vaccine , Cohort Studies , Health Personnel , Humans , Prospective Studies , SARS-CoV-2 , Wales/epidemiology , Young Adult
10.
Age Ageing ; 51(1)2022 01 06.
Article in English | MEDLINE | ID: covidwho-1545894

ABSTRACT

BACKGROUND: vaccinations for COVID-19 have been prioritised for older people living in care homes. However, vaccination trials included limited numbers of older people. AIM: we aimed to study infection rates of SARS-CoV-2 for older care home residents following vaccination and identify factors associated with increased risk of infection. STUDY DESIGN AND SETTING: we conducted an observational data-linkage study including 14,104 vaccinated older care home residents in Wales (UK) using anonymised electronic health records and administrative data. METHODS: we used Cox proportional hazards models to estimate hazard ratios (HRs) for the risk of testing positive for SARS-CoV-2 infection following vaccination, after landmark times of either 7 or 21 days post-vaccination. We adjusted HRs for age, sex, frailty, prior SARS-CoV-2 infections and vaccination type. RESULTS: we observed a small proportion of care home residents with positive polymerase chain reaction (tests following vaccination 1.05% (N = 148), with 90% of infections occurring within 28 days. For the 7-day landmark analysis we found a reduced risk of SARS-CoV-2 infection for vaccinated individuals who had a previous infection; HR (95% confidence interval) 0.54 (0.30, 0.95). For the 21-day landmark analysis, we observed high HRs for individuals with low and intermediate frailty compared with those without; 4.59 (1.23, 17.12) and 4.85 (1.68, 14.04), respectively. CONCLUSIONS: increased risk of infection after 21 days was associated with frailty. We found most infections occurred within 28 days of vaccination, suggesting extra precautions to reduce transmission risk should be taken in this time frame.


Subject(s)
COVID-19 , Aged , Cohort Studies , Humans , Longitudinal Studies , SARS-CoV-2 , Wales/epidemiology
11.
BMJ Paediatr Open ; 5(1): e001049, 2021.
Article in English | MEDLINE | ID: covidwho-1238538

ABSTRACT

Background: Better understanding of the role that children and school staff play in the transmission of SARS-CoV-2 is essential to guide policy development on controlling infection while minimising disruption to children's education and well-being. Methods: Our national e-cohort (n=464531) study used anonymised linked data for pupils, staff and associated households linked via educational settings in Wales. We estimated the odds of testing positive for SARS-CoV-2 infection for staff and pupils over the period August- December 2020, dependent on measures of recent exposure to known cases linked to their educational settings. Results: The total number of cases in a school was not associated with a subsequent increase in the odds of testing positive (staff OR per case: 0.92, 95% CI 0.85 to 1.00; pupil OR per case: 0.98, 95% CI 0.93 to 1.02). Among pupils, the number of recent cases within the same year group was significantly associated with subsequent increased odds of testing positive (OR per case: 1.12, 95% CI 1.08 to 1.15). These effects were adjusted for a range of demographic covariates, and in particular any known cases within the same household, which had the strongest association with testing positive (staff OR: 39.86, 95% CI 35.01 to 45.38; pupil OR: 9.39, 95% CI 8.94 to 9.88). Conclusions: In a national school cohort, the odds of staff testing positive for SARS-CoV-2 infection were not significantly increased in the 14-day period after case detection in the school. However, pupils were found to be at increased odds, following cases appearing within their own year group, where most of their contacts occur. Strong mitigation measures over the whole of the study period may have reduced wider spread within the school environment.


Subject(s)
COVID-19 , Child , Humans , SARS-CoV-2 , Schools , Semantic Web , Wales/epidemiology
12.
BMJ Open ; 10(10): e043010, 2020 10 21.
Article in English | MEDLINE | ID: covidwho-889902

ABSTRACT

INTRODUCTION: The emergence of the novel respiratory SARS-CoV-2 and subsequent COVID-19 pandemic have required rapid assimilation of population-level data to understand and control the spread of infection in the general and vulnerable populations. Rapid analyses are needed to inform policy development and target interventions to at-risk groups to prevent serious health outcomes. We aim to provide an accessible research platform to determine demographic, socioeconomic and clinical risk factors for infection, morbidity and mortality of COVID-19, to measure the impact of COVID-19 on healthcare utilisation and long-term health, and to enable the evaluation of natural experiments of policy interventions. METHODS AND ANALYSIS: Two privacy-protecting population-level cohorts have been created and derived from multisourced demographic and healthcare data. The C20 cohort consists of 3.2 million people in Wales on the 1 January 2020 with follow-up until 31 May 2020. The complete cohort dataset will be updated monthly with some individual datasets available daily. The C16 cohort consists of 3 million people in Wales on the 1 January 2016 with follow-up to 31 December 2019. C16 is designed as a counterfactual cohort to provide contextual comparative population data on disease, health service utilisation and mortality. Study outcomes will: (a) characterise the epidemiology of COVID-19, (b) assess socioeconomic and demographic influences on infection and outcomes, (c) measure the impact of COVID-19 on short -term and longer-term population outcomes and (d) undertake studies on the transmission and spatial spread of infection. ETHICS AND DISSEMINATION: The Secure Anonymised Information Linkage-independent Information Governance Review Panel has approved this study. The study findings will be presented to policy groups, public meetings, national and international conferences, and published in peer-reviewed journals.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Delivery of Health Care/standards , Pandemics/prevention & control , Pneumonia, Viral/therapy , COVID-19 , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/epidemiology , Risk Factors , SARS-CoV-2 , Wales/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL